A survey of hybrid ANN/HMM models for automatic speech recognition
نویسندگان
چکیده
منابع مشابه
A survey of hybrid ANN/HMM models for automatic speech recognition
In spite of the advances accomplished throughout the last decades, automatic speech recognition (ASR) is still a challenging and di$cult task. In particular, recognition systems based on hidden Markov models (HMMs) are e!ective under many circumstances, but do su!er from some major limitations that limit applicability of ASR technology in real-world environments. Attempts were made to overcome ...
متن کاملSVMs for Automatic Speech Recognition: A Survey
Hidden Markov Models (HMMs) are, undoubtedly, the most employed core technique for Automatic Speech Recognition (ASR). Nevertheless, we are still far from achieving high-performance ASR systems. Some alternative approaches, most of them based on Artificial Neural Networks (ANNs), were proposed during the late eighties and early nineties. Some of them tackled the ASR problem using predictive ANN...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملDiscriminative training of HMMs for automatic speech recognition: A survey
Recently, discriminative training (DT) methods have achieved tremendous progress in automatic speech recognition (ASR). In this survey article, all mainstream DT methods in speech recognition are reviewed from both theoretical and practical perspectives. From the theoretical aspect, many effective discriminative learning criteria in ASR are first introduced and then a unifying view is presented...
متن کاملCanonical state models for automatic speech recognition
Current speech recognition systems are often based on HMMs with state-clustered Gaussian Mixture Models (GMMs) to represent the context dependent output distributions. Though highly successful, the standard form of model does not exploit any relationships between the states, they each have separate model parameters. This paper describes a general class of model where the context-dependent state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2001
ISSN: 0925-2312
DOI: 10.1016/s0925-2312(00)00308-8